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Quantum Resources for
Information Processing

Davide Girolami

West Lafayette, 17 January 2019



How quantum differs from classical?



Quantum Resources



Goal: Characterizing Quantum Resources

? Theoretical Quantification: fR(ρ) being mo-

notone under free operations

? Demonstration of supraclassical
performance: fR(ρ) is figure of merit in a

task

? Experimental Detection:

fR(ρ) = 〈Oexp〉,Oexp = O†exp



(Some) Technical Objectives

I Evaluating the power of quantum devices (Th)

II Evaluating the power of quantum devices (Exp)

III (Future) Quantum Resources for Artificial In-
telligence



I Evaluating the power of quantum devices
(Th)

• System S, described by ρN

• How to quantify correlations of order 2 ≤ k ≤
N in an N particle system ?



Covariances? No thanks

〈X1X2 . . .XN〉ρN − Πi〈Xi〉ρN

Don’t detect classical correlations X
Can be created by local operations X
Can be created by fine graining X

D. Kaszlikowski, A. Sen, U. Sen, V. Vedral, and A. Win-
ter, PRL 101, 070502 (2008); Z. Walczak, Comment; D.
Kaszlikowski, et al., Reply. Z. Walczak, PLA 374, 3999
(2010), C. H. Bennett, et al., PRA 83, 012312 (2011)



Correlation hierarchy
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Relative entropy of genuine multipartite
correlations

• Correlations higher than k: distance
to Pk

Sk→N(ρN) := min
σ∈Pk

S(ρN||σ)

• Genuine k-partite correlations:

Sk(ρN) := Sk−1→N(ρN)− Sk→N(ρN)



A Complexity measure

! Equally correlated states can have
very different structure

? Single index classifying multiparti-
te classical and quantum states



Weaving := weighted sum of genuine
multipartite correlations

WS(ρN) =
N∑

k=2
ωkSk(ρN)

D. Girolami, T. Tufarelli, and C. Susa, Phys. Rev. Lett.
119, 140505 (2017)



Test, ωk = k− 1

State WS

[(|00〉 〈00|+ |11〉 〈11|)/2]⊗N/2 N/2

[ (|00〉+|11〉)√
2

]⊗N/2 N

(
∑d

i=1 |ii〉 /
√

d)⊗N/2 N log d

(|0〉⊗N + |1〉⊗N)/
√

2 ∼ N log N∑
iPi(|0〉⊗N/2 ⊗ |1〉⊗N/2)/

√( N
N/2

)
∼ N2



II Evaluating the power of quantum
devices (Exp)



Usefulness = Superlinear Speed

? Speed(ΠiUi
tΨNUi

t
†) ≥ flinear(N)⇒ ΨN is entangled

? O(4N) measurements required to reconstruct system
state



Evaluating Speed with limited resources

? Two system copies and O(3n) measurements are suf-
ficient to evaluate the speed function, even if sy-
stem state and dynamics are unknown



EXP scheme for n-qubit systems

V1,2,...,n = ⊗iVi, Vi = I2 − 2
∣∣φi
−
〉 〈
φi
−
∣∣
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C. M. Alves and D. Jaksch, PRL 93, 110501 (2004), H.
Jeong et al., J. Opt. Soc. Am. B 31, 3057 (2014)





Devices: IBM Q

• https://www.research.ibm.com/ibm-q/

• 5-qubit, 16-qubit machines

• Superconducting qubits initialized in
ground state at 15ml K, gate error=10−3

• remote access via Composer and Qiskit

https://www.research.ibm.com/ibm-q/


Entanglement detection in ibmqx4

BUT constraints... split into two experiments



A comparison

? ρ = p |φ+〉 〈φ+|+(1−p) |φ−〉 〈φ−| ,p ∈ [0,1],Ut = e−iσxt, t =
π/6
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Left: ibmqx4; Right: optical setup, C. Zhang et al. PRA
96, 042327 (2017)
Original Scheme: D. Girolami, PRL 113, 170401 (2014)



Multipartite Entanglement detection

? A state ΨN is k-partite entangled iff it is not a
tensor product of states describing≤ k-subsystems

? E.g. Ψ3 6= Ψ2 ⊗ Ψ1 ⇒ Ψ3 displays 3-partite
entanglement

? Speed(
∑

i Ui
tΨNUi

t
†)≥ (bN/kck+(N−bN/kck)2)/4,

k ≥ 2⇒ ΨN is at least k-partite entangled



Multipartite Entanglement detection

BUT constraints... split into three experiments



Detection of speed-up due to tripartite and
bipartite Entanglement

? |GHZ〉 = 1/
√

2(|000〉+ |111〉),Ut = e−iσxt, e−iσzt, t = π/6

? Speed()≥ .75 certifies bipartite entanglement, Speed()≥
1.25 certifies tripartite entanglement

? SpeedX(ΠiUi
t |GHZ〉)= 0.61± 0.16 X

? SpeedZ(ΠiUi
t |GHZ〉)= 1.89± 0.20. V



Bonus: Bound to state engineering

D. Girolami, Phys. Rev. Lett. (in press), arXiv:1808.01649



III Quantum Resources for AI



How quantum systems think?



How quantum systems think?



Quantum Decision Making

• Quantize classical strategies (Markov decision
processes, dynamic programming)

• Attack by quantizing the Bellman equation(s)
and performance comparing

• Deliberation as a quantum walk, faster deci-
sion (smarter?)

• Testable in today quantum machines, e.g. IBM
chips (D-Wave?)



Summary

• Quantum Information Processing as clever use
of quantum resources

• Foundational and practical value

• A great record of successes, but also future ap-
plications



The End

Email: davegirolami@gmail.com

Website: https://sites.google.com/site/davegirolami/


